\square

Vandana Tutorial

Mapping your future...

CLASS IX

SAMPLE PAPER

MATHS

(Circles, area of ||gm and construction)
(Section A - one mark each)

1. Any angle in the semicircle is
(a) 90° (b) 1 right angle (c)
(c) 270°
(d) both a and b
2. Find angle $\angle \mathrm{PCD}$

$$
A .140^{\circ} \text { (b) } 110^{\circ} \text { (c) } 70^{\circ} \text { (d) } 60^{\circ}
$$

3. A circle has in finite number of chords. True or false.
4. An arc is a ---------------------- when its ends are ends of diameter.
5. Parallelograms on the same base and b / w the same parallels are equal in area. True or false.
(Section B - two marks each)
6. D and E are the points on the side $A B$ and $A C$ respectively of triangle $A B C$ such that $\operatorname{ar}(D B C)=\operatorname{ar}(E B C)$. Prove that DE\|BC.
7. P and Q are any two points lying on the sides $D C$ and $A D$ respectively of a parallelogram ABCD. Show that ar $(\mathrm{APB})=\operatorname{ar}(\mathrm{BQC})$.
8. Construct a triangle with base of length 8 cm , difference of two sides 3.5 cm and one of the angles of the base as 45^{0}.
9. In the figure, l is a line which intersects two concentric circles with centre P at points
$\mathrm{A}, \mathrm{C}, \mathrm{D}$ and B, Prove that $\mathrm{AC}=\mathrm{DB}$
10. XY is a line parallel to side BC of triangle ABC . If $\mathrm{BE} \| \mathrm{AC}$ and $\mathrm{CF} \| \mathrm{AB}$ and meet XY at E and F respectively, show that $\operatorname{ar}(\mathrm{ABE})=\operatorname{ar}(\mathrm{ACF})$

(section B- three marks each)

chasesuess	CBSEGuess.com

11. If circles are drawn taking two sides of triangle as diameters prove that the point of intersection of these circles lie on the third sides.
12. Construct a triangle ABC , in which $\angle \mathrm{A}=30^{\circ}, \angle \mathrm{B}=90^{\circ}$ and $\mathrm{AB}+\mathrm{BC}+\mathrm{AC}=13 \mathrm{~cm}$
13. Prove that angle subtended by an arc of a circle at the center is double the angle subtended by it any point on the remaining part of the circle.
14. Prove that the cyclic \|gm is a rectangle.
